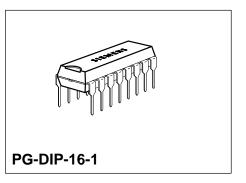
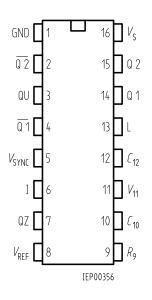
Phase Control IC


TCA 785

Bipolar IC

Pb-free lead plating; RoHS compliant

Features


- Reliable recognition of zero passage
- Large application scope
- May be used as zero point switch
- LSL compatible
- Three-phase operation possible (3 ICs)
- Output current 250 mA
- Large ramp current range
- Wide temperature range

Туре	Ordering Code	Package
TCA 785	Q67000-A2321	PG-DIP-16-1

This phase control IC is intended to control thyristors, triacs, and transistors. The trigger pulses can be shifted within a phase angle between 0° and 180°. Typical applications include converter circuits, AC controllers and three-phase current controllers.

This IC replaces the previous types TCA 780 and TCA 780 D.

Pin Configuration

(top view)

Pin Definitions and Functions

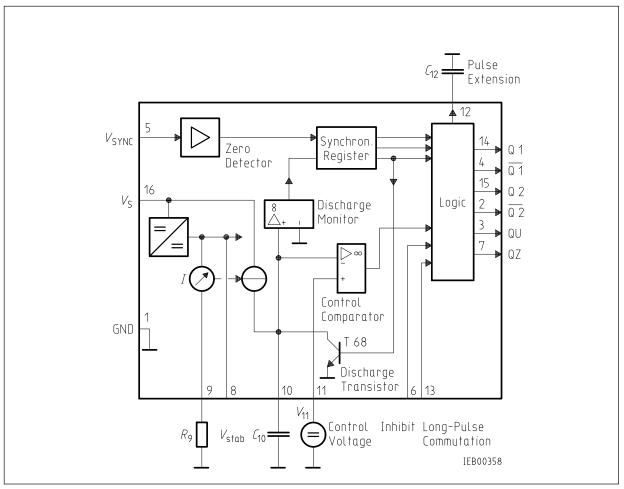
Pin	Symbol	Function
1	GND	Ground
2 3 4		Output 2 inverted Output U Output 1 inverted
5	VSYNC	Synchronous voltage
6 7	l Q Z	Inhibit Output Z
8	V ref	Stabilized voltage
9 10	R9 C10	Ramp resistance Ramp capacitance
11	V11	Control voltage
12	C12	Pulse extension
13	L	Long pulse
14 15	Q 1 Q 2	Output 1 Output 2
16	Vs	Supply voltage

Functional Description

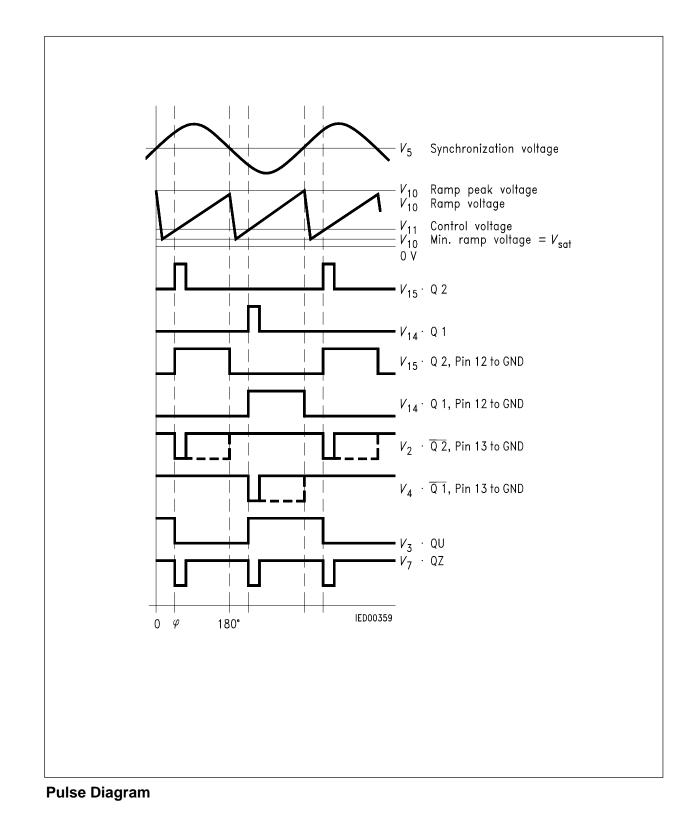
The synchronization signal is obtained via a high-ohmic resistance from the line voltage (voltage V_5). A zero voltage detector evaluates the zero passages and transfers them to the synchronization register.

This synchronization register controls a ramp generator, the capacitor C_{10} of which is charged by a constant current (determined by R_9). If the ramp voltage V_{10} exceeds the control voltage V_{11} (triggering angle φ), a signal is processed to the logic. Dependent on the magnitude of the control voltage V_{11} , the triggering angle φ can be shifted within a phase angle of 0° to 180°.

For every half wave, a positive pulse of approx. 30 μ s duration appears at the outputs Q 1 and Q 2. The pulse duration can be prolonged up to 180° via a capacitor C_{12} . If pin 12 is connected to ground, pulses with a duration between φ and 180° will result.


Outputs Q^1 and Q^2 supply the inverse signals of Q 1 and Q 2.

A signal of φ +180° which can be used for controlling an external logic, is available at pin 3.


A signal which corresponds to the NOR link of Q 1 and Q 2 is available at output Q Z (pin 7).

The inhibit input can be used to disable outputs Q1, Q2 and $\overline{Q1}$, $\overline{Q2}$.

Pin 13 can be used to extend the outputs $\overline{Q1}$ and $\overline{Q2}$ to full pulse length (180° – φ).

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Supply voltage	Vs	- 0.5	18	V
Output current at pin 14, 15	Ια	- 10	400	mA
Inhibit voltage Control voltage Voltage short-pulse circuit	V6 V11 V13	- 0.5 - 0.5 - 0.5	Vs Vs Vs	V V V
Synchronization input current	V5	- 200	± 200	μA
Output voltage at pin 14, 15	Vq		Vs	V
Output current at pin 2, 3, 4, 7	Ια		10	mA
Output voltage at pin 2, 3, 4, 7	Vq		Vs	V
Junction temperature Storage temperature	Tj Tstg	- 55	150 125	°C ℃
Thermal resistance system - air	$R_{ m th}$ SA		80	K/W

Operating Range

Supply voltage	Vs	8	18	V
Operating frequency	f	10	500	Hz
Ambient temperature	TA	- 25	85	°C

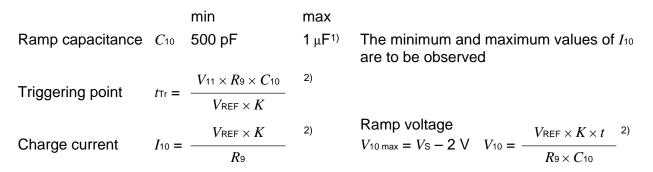
Characteristics

 $8 \le V_{S} \le 18 \text{ V}; -25 \text{ °C} \le T_{A} \le 85 \text{ °C}; f = 50 \text{ Hz}$

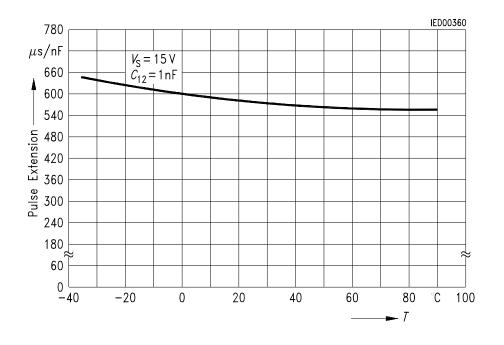
Parameter	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Circuit
Supply current consumption S1 S6 open $V_{11} = 0 V$ $C_{10} = 47 \text{ nF}; R_9 = 100 \text{ k}\Omega$	Is	4.5	6.5	10	mA	1
Synchronization pin 5 Input current <i>R</i> ² varied Offset voltage	$I_{5 m rms}$ ΔV_{5}	30	30	200 75	μA mV	1
Control input pin 11 Control voltage range Input resistance	V11 R11	0.2	15	$V_{ m 10\ peak}$	V kΩ	1 5

Characteristics (cont'd)

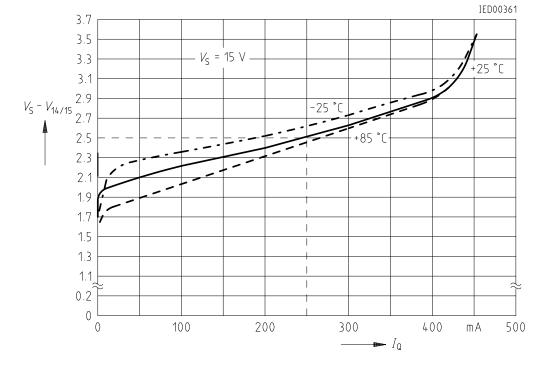
 $8 \le V_{S} \le 18 \text{ V}; -25 \text{ °C} \le T_{A} \le 85 \text{ °C}; f = 50 \text{ Hz}$


Parameter	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Circuit
Ramp generator Charge current Max. ramp voltage Saturation voltage at capacitor Ramp resistance Sawtooth return time	<i>I</i> 10 <i>V</i> 10 <i>V</i> 10 <i>R</i> 9 <i>t</i> f	10 100 3	225 80	$ \begin{array}{r} 1000 \\ V_2 - 2 \\ 350 \\ 300 \end{array} $	μΑ V mV kΩ μs	1 1.6 1 1
Inhibit pin 6 switch-over of pin 7 Outputs disabled Outputs enabled Signal transition time Input current $V_6 = 8 \text{ V}$ Input current $V_6 = 1.7 \text{ V}$	V6 L V6 н tr I6 н — I6 L	4 1 80	3.3 3.3 500 150	2.5 5 800 200	V V μs μA μA	1 1 1 1
Deviation of I_{10} $R_9 = \text{const.}$ $V_S = 12 \text{ V}; C_{10} = 47 \text{ nF}$ Deviation of I_{10} $R_9 = \text{const.}$ $V_S = 8 \text{ V}$ to 18 V Deviation of the ramp voltage between 2 following half-waves, $V_S = \text{const.}$	I10 I10 ΔV10 max	- 5 - 20	± 1	5 20	% % %	1
Long pulse switch-over pin 13 switch-over of S8 Short pulse at output Long pulse at output Input current $V_{13} = 8 V$ Input current $V_{13} = 1.7 V$	V13 н V13 ∟ I13 н — I13 ∟	3.5 45	2.5 2.5 65	2 10 100	V V μΑ μΑ	1 1 1 1
Outputs pin 2, 3, 4, 7 Reverse current $V_{Q} = V_{S}$ Saturation voltage $I_{Q} = 2 \text{ mA}$	Iceo Vsat	0.1	0.4	10 2	μA V	2.6 2.6

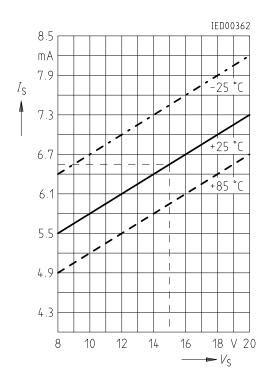
Characteristics (cont'd)

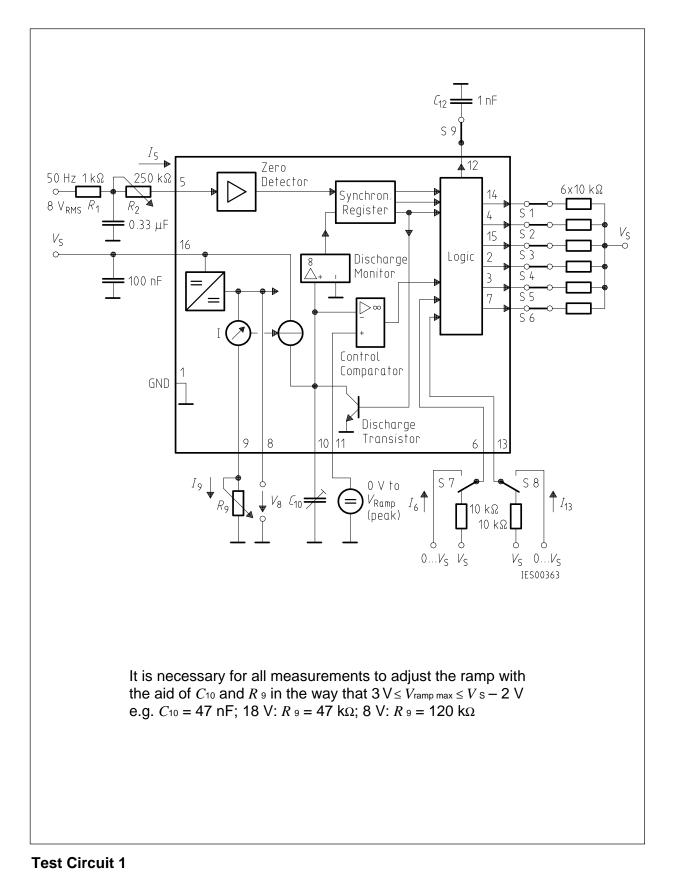

 $8 \le V_{S} \le 18 \text{ V}; -25 \text{ °C} \le T_{A} \le 85 \text{ °C}; f = 50 \text{ Hz}$

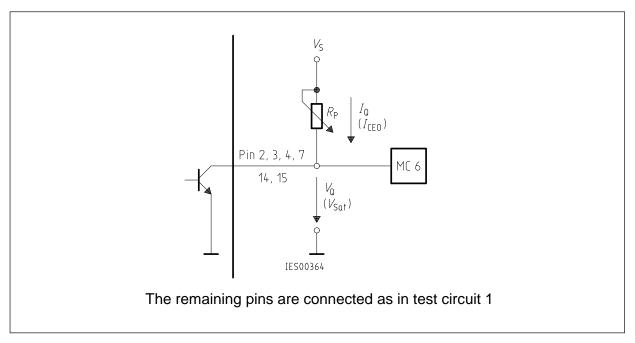
Parameter	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Circuit
Outputs pin 14, 15 H-output voltage $-I_{Q} = 250 \text{ mA}$	<i>V</i> 14/15 н	Vs – 3	Vs - 2.5	Vs - 1.0	V	3.6
L-output voltage $I_{\Omega} = 2 \text{ mA}$	V14/15 L	0.3	0.8	2	V	2.6
Pulse width (short pulse) S9 open	<i>t</i> p	20	30	40	μS	1
Pulse width (short pulse) with C_{12}	tр	530	620	760	μs/ nF	1
Internal voltage control Reference voltage Parallel connection of 10 ICs possible	V_{REF}	2.8	3.1	3.4	V	1
TC of reference voltage	αref		2×10^{-4}	5×10^{-4}	1/K	1


Application Hints for External Components

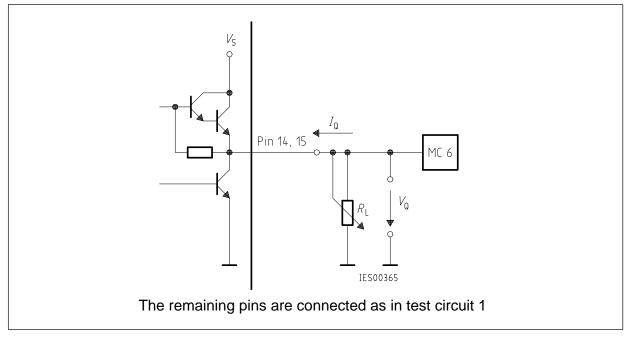
Pulse Extension versus Temperature

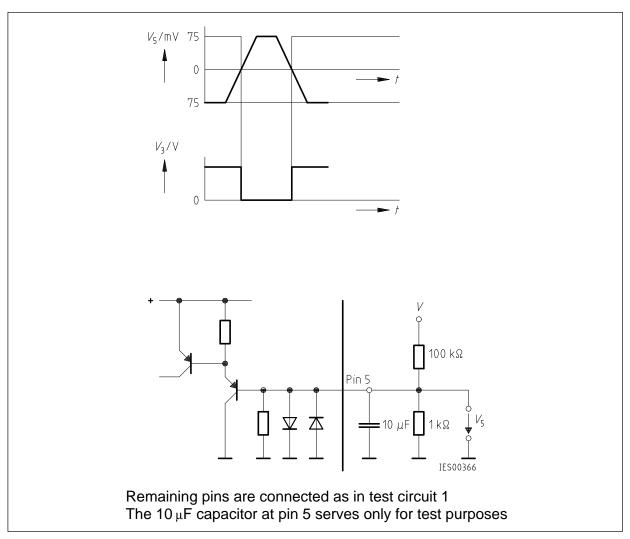


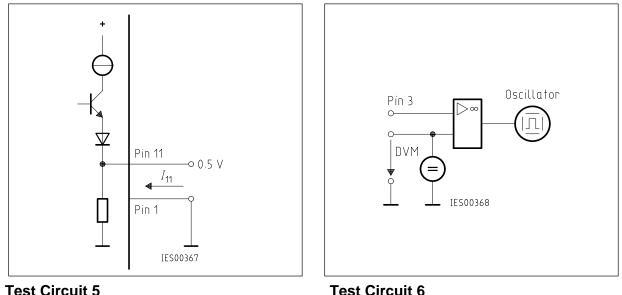

¹⁾ Attention to flyback times ²⁾ $K = 1.10 \pm 20 \%$



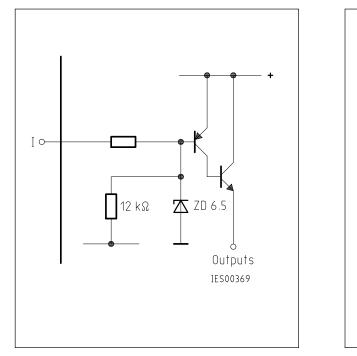
Output Voltage measured to + Vs

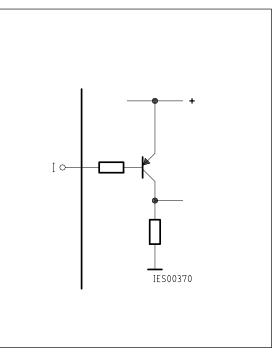

Supply Current versus Supply Voltage

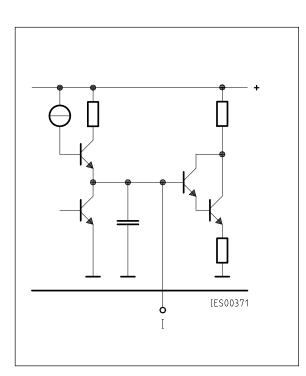


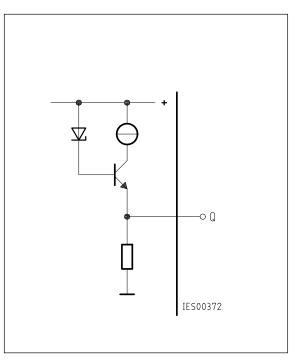

Test Circuit 2

Test Circuit 3

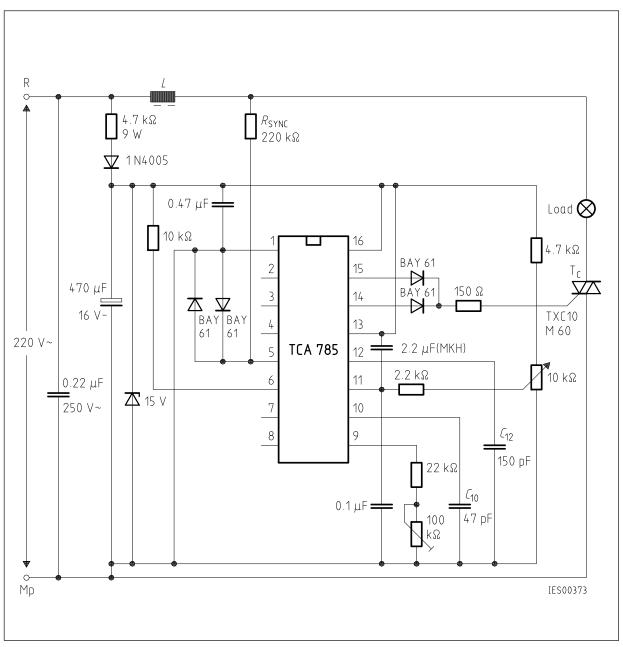




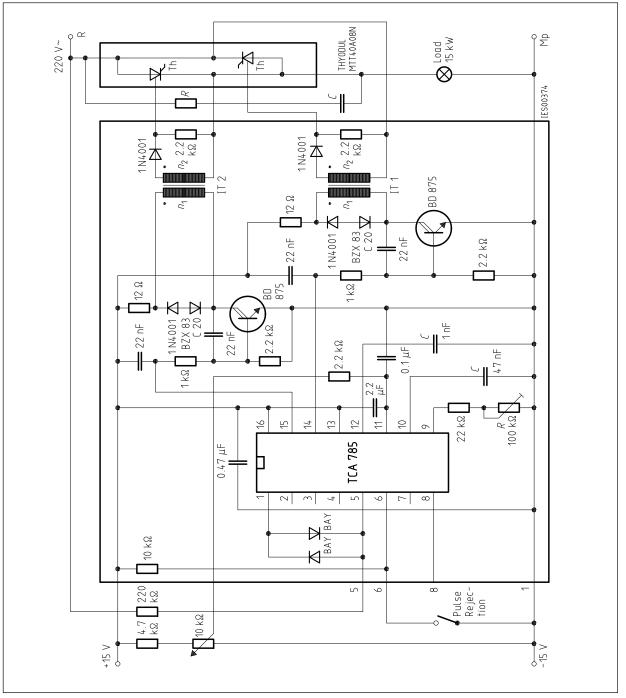

Test Circuit 5



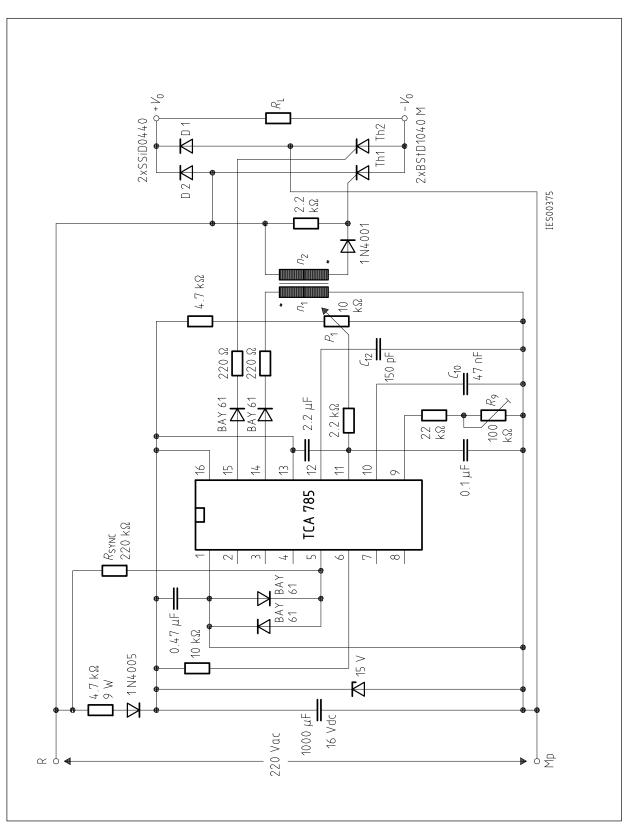
Inhibit 6


Pulse Extension 12

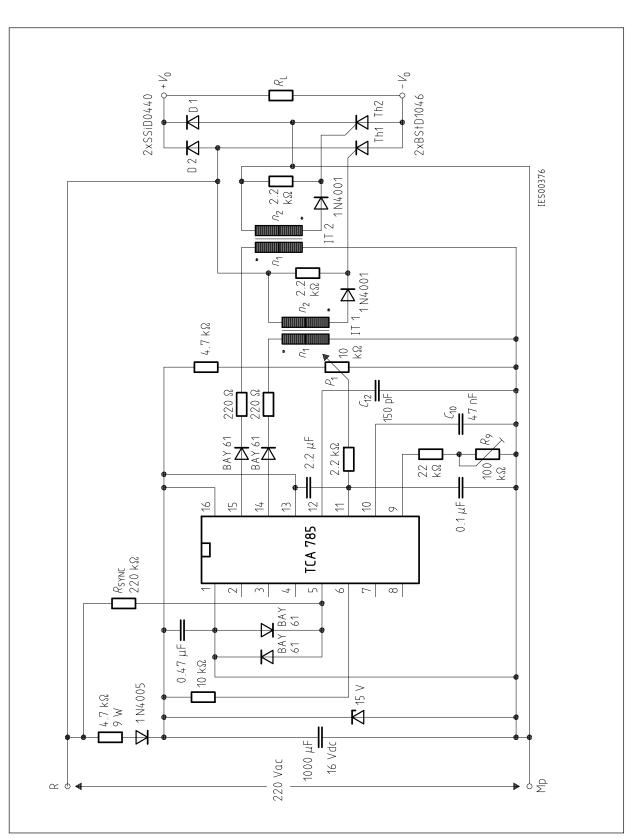
Long Pulse 13


Reference Voltage 8

TCA 785


Application Examples Triac Control for up to 50 mA Gate Trigger Current

A phase control with a directly controlled triac is shown in the figure. The triggering angle of the triac can be adjusted continuously between 0° and 180° with the aid of an external potentiometer. During the positive half-wave of the line voltage, the triac receives a positive gate pulse from the IC output pin 15. During the negative half-wave, it also receives a positive trigger pulse from pin 14. The trigger pulse width is approx. 100 μ s.


Fully Controlled AC Power Controller Circuit for Two High-Power Thyristors

Shown is the possibility to trigger two antiparalleled thyristors with one IC TCA 785. The trigger pulse can be shifted continuously within a phase angle between 0° and 180° by means of a potentiometer. During the negative line half-wave the trigger pulse of pin 14 is fed to the relevant thyristor via a trigger pulse transformer. During the positive line half-wave, the gate of the second thyristor is triggered by a trigger pulse transformer at pin 15.

Half-Controlled Single-Phase Bridge Circuit with Trigger Pulse Transformer and Direct Control for Low-Power Thyristors

15

Half-Controlled Single-Phase Bridge Circuit with Two Trigger Pulse Transformers for Low-Power Thyristors