INTERNATIONAL RECTIFIER

INTERNATIONAL RECTIFIER

T-39-11

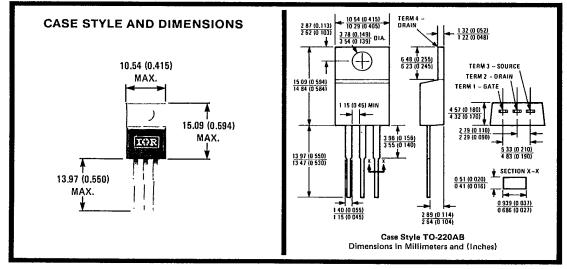
HEXFET® TRANSISTORS IRFZ20

N-Channel 50 Volt Power MOSFETs

50 Volt, 0.1 Ohm HEXFET TO-220AB Plastic Package

The HEXFET technology has expanded its product base to serve the low voltage, very low RDS(cn) MOSFET transistor requirements. International Rectifier's highly efficient geometry and unique processing of the HEXFET have been combined to create the lowest on resistance per device performance. In addition to this feature all HEXFETs have documented reliability and parts per million quality!

The HEXFET transistors also offer all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and in systems that are operated from low voltage batteries, such as automotive, portable equipment, etc.

Product Summary

Part Number	V _{DS}	V _{DS} R _{DS(on)}				
IRFZ20	50V	0.10Ω	15A			
IRFZ22	50V	0.12Ω	14A			

Features:

- Extremely Low RDS(on)
- Compact Plastic Package
- Fast Switching
- Low Drive Current
- Ease of Paralleling
- Excellent Temperature Stability
- Parts Per Million Quality

INTERNATIONAL RECTIFIER

T-39-11

Absolute Maximum Ratings

Parameter		IRFZ20	IRFZ22	Units
V _{DS}	Drain - Source Voltage ①	50	50	V
VDGR	Drain - Gate Voltage (RGS = 20 KQ) ①	60	50	V
D @ TC = 25°C	Continuous Drain Current	16	14	A
D @ TC = 100°C		10	9.0	Α
DM	Pulsed Drain Current ①	60	56	A
VGS	Gate - Source Voltage		V	
PD @ TC = 25°C	Max. Power Dissipation	40 (S	W	
D W 1C - 23 0	Linear Derating Factor	0.32 (\$	W/K @	
ILM	Inductive Current, Clamped	(See Fig. 15 a	A	
F141		60	56	
T _{stg}	Operating Junction and Storage Temperature Range	-5	°C	
- July	Lead Temperature	300 (0.063 in. (1.6	°C	

Electrical Characteristics @ T_C = 25°C (Unless Otherwise Specified)

	Parameter	Туре	Min.	Тур.	Max.	Units	Test Cor	nditions	
3V _{DSS}	Drain - Source Breakdown Voltage	IRFZ20	50		-	V	V _{GS} = 0V		
- 033		IRFZ22	50	_	-	V	I _D = 250 μA		
VGS(th)	Gate Threshold Voltage	ALL	2.0	_	4.0	٧	V _{DS} = V _{GS} , I _D = 250 μA		
GSS	Gate-Source Leakage Forward	ALL	_	<u> </u>	500	пA	V _{GS} = 20V		
GSS	Gate-Source Leakage Reverse	ALL	_	_	-500	nA	V _{GS} =-20V		
DSS	Zero Gate Voltage Drain Current	1 1			250	μΑ	VDS = Max. Rating, VGS =	0V	
000		ALL			1000	μA	V _{DS} = Max. Rating × 0.8, \	$I_{GS} = 0V, T_{C} = 125^{\circ}C$	
D(on)	On-State Drain Current @	IRFZ20	15	_	-	Α	V _{DS} > I _{D(on)} × R _{DS(on)max} , V _{GS} = 10V		
D(OII)		IRFZ22	14	- T	-	Α	VDS > ID(on) \ IDS(on)ma	x./ 'do '	
DS(on)	Static Drain-Source On-State Resistance @	IRFZ20	_	0.080	0.100	8	V _{GS} = 10V, I _D = 9.0Å		
Daton		IRFZ22	_	0.110	0.120	Ω	1		
9fs	Forward Transconductance ②	ALL	5.0	6.0	- .	S (0)	V _{DS} > I _{D(on)} × R _{DS(on)} m V _{GS} = 0V, V _{DS} = 25V, f =	_{ax.,} I _D = 9.0A	
Ciss	Input Capacitance	ALL	-	560	850	рF	V _{GS} = 0V, V _{DS} = 25V, f =	1.0 MHz	
Coss	Output Capacitance	ALL	_	250	350	pF	See Fig. 10		
C ₇₈₈	Reverse Transfer Capacitance	ALL	_	60	100	рF			
td(on)	Turn-On Delay Time	ALL		15	30	ns	$V_{DD} \cong 25V$, $I_D = 9.0A$, $Z_0 =$	= 50Ω	
t _r	Rise Time	ALL	_	45	90	ns	See Fig. 17		
td(off)	Turn-Off Delay Time	ALL	_	20	40	ns	(MOSFET switching times are	essentially independent of	
tf	Fall Time	ALL		15	30	ПS	operating temperature.)		
ο̄g	Total Gate Charge (Gate-Source Plus Gate-Drain)	ALL		1:2	17	пC	V _{GS} = 10V, I _D = 20A, V _{DS} See Fig. 18 for test circuit. (G	; = 0.8 Max. Rating. iate charge is essentially	
Q _{gs}	Gate-Source Charge	ALL	T -	9,0	-	nC	independent of operating tem	perature.)	
Q _{ad}	Gate-Drain ("Miller") Charge	ALL	T	3.0		nC]		
LD	Internal Drain Inductance		-	3.5	-	nH	Measured from the contact screw on tab to center of die.	Modified MOSFET symbol showing the internal device	
		ALL	-	4.5	-	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	Inductances.	
Lg	Internal Source Inductance	ALL	-	7.5		nH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	\$\frac{1}{1}\frac{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\	

Thermal Resistance

• • • • • • • • • • • • • • • • • • • •					
RthJC Junction-to-Case	ALL	 _	3.12	K/W @	
RthCS Case-to-Sink	ALL	 1.0	_	K/W @	Mounting surface flat, smooth, and greased.
R. A. Junction-to-Ambient	ALL	 	80	K/W @	Typical socket mount

IRFZ20, IRFZ22 Devices

T-39-11

Source-Drain Diode Ratings and Characteristics

IS Continuous Source Current (Body Diode)	Continuous Source Current	IRFZ20		Γ-	15	A	Modified MOSFET symbol showing the integral o.
	IRFZ22	_	_	14	A	reverse PN junction rectifier.	
ISM Pulse Source Current	IRFZ20			60	Α	1 . ([計事)	
	(Body Diode) ③	IRFZ22		_	56	A	1
V _{SD} Diode Forward Voltage ②	IRFZ20			1.5	V	T _C = 25°C, ! _S = 15A, V _{GS} = 0V	
		IRFZ22			1.4	V	T _C = 25°C, I _S = 14A, V _{GS} = 0V
trr	Reverse Recovery Time	ALL	_	100		ns	$T_{.1} = 150^{\circ}\text{C}, \text{ Ip.} = 15\text{A}, \text{ dlp.ktt} = 100\text{A}/\mu\text{s}$
Q_{RR}	Reverse Recovered Charge	ALL		0.4		μC	T _J = 150°C, I _E = 15A, dl _E ktt = 100A/µs
ton	Forward Turn-on Time	ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lp.					

① $T_J = 25^{\circ}C$ to 150°C.

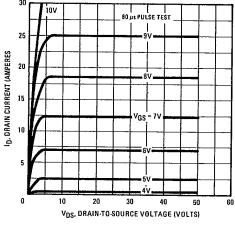
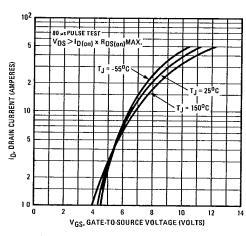



Fig. 1 — Typical Output Characteristics

 ${\bf Fig.~2-Typical~Transfer~Characteristics}$

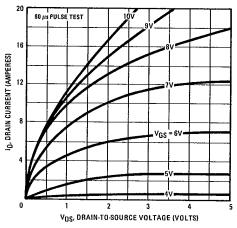


Fig. 3 — Typical Saturation Characteristics

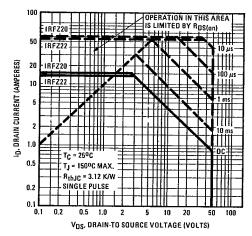


Fig. 4 - Maximum Safe Operating Area

② Pulse Test: Pulse width $\leq 300 \mu$ s, Duty Cycle $\leq 2\%$.

③ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5).

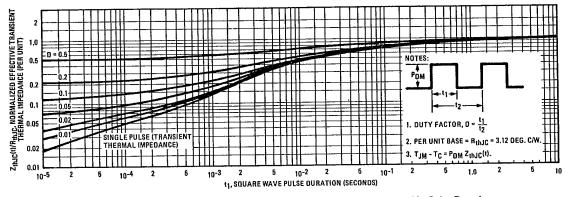


Fig. 5 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

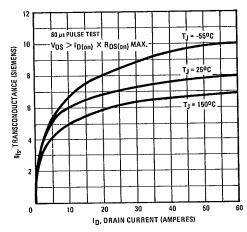


Fig. 6 - Typical Transconductance Vs. Drain Current

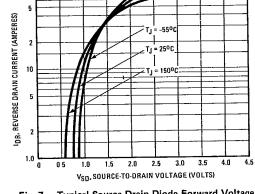


Fig. 7 - Typical Source-Drain Diode Forward Voltage

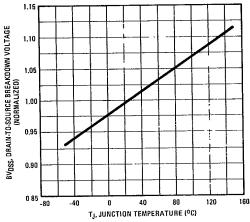


Fig. 8 - Breakdown Voltage Vs. Temperature

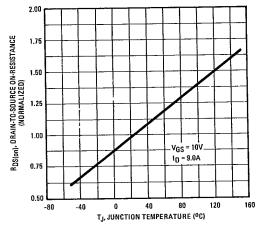


Fig. 9 - Normalized On-Resistance Vs. Temperature

IRFZ20, IRFZ22 Devices

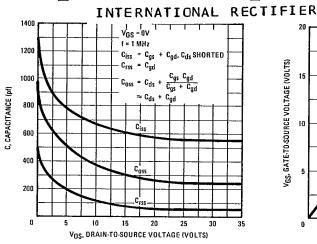


Fig. 10 — Typical Capacitance Vs. Drain-to-Source Voltage

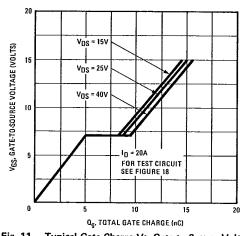


Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage

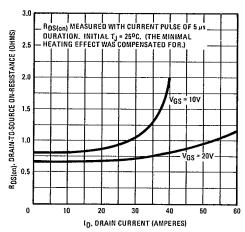


Fig. 12 - Typical On-Resistance Vs. Drain Current

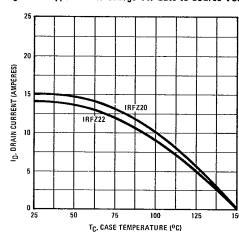


Fig. 13 - Maximum Drain Current Vs. Case Temperature

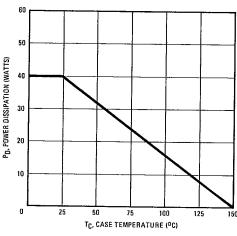


Fig. 14 - Power Vs. Temperature Derating Curve

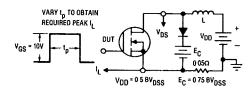


Fig. 15 — Clamped Inductive Test Circuit

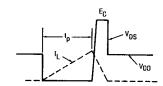


Fig. 16 — Clamped Inductive Waveforms

INTERNATIONAL RECTIFIER

T-39-11

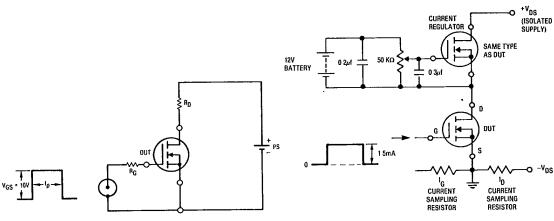
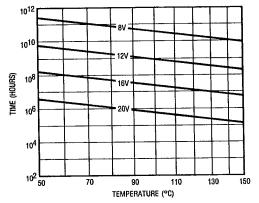
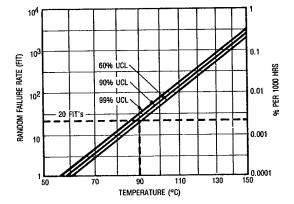




Fig. 17 - Switching Time Test Circuit

Fig. 18 — Gate Charge Test Circuit

*Fig. 19 — Typical Time to Accumulated 1% Failure

*Fig. 20 — Typical High Temperature Reverse Bias (HTRB) Failure Rate

^{*}The data shown is correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.