INTEGRATED CIRCUITS

DATA SHEET

TDA4650

Multistandard colour decoder, with negative colour difference output signals

Preliminary specification File under Integrated Circuits, IC02 March 1991

TDA4650

FEATURES

Identifies and demodulates PAL, SECAM, NTSC 3.58 and NTSC 4.43 chrominance signals with:

- Identification
 - automatic standard identification by sequential inquiry
 - secure SECAM identification at 50 Hz only, with PAL priority
 - four switched outputs for chrominance filter selection and display control
 - external service switch for oscillator adjustment
- PAL / NTSC demodulation
 - H (burst) and V blanking
 - PAL switch (disabled for NTSC)

- NTSC phase shift (disabled for PAL)
- PLL-controlled reference oscillator
- two reference oscillator crystals on separate pins with automatic switching
- quadrature demodulator with subcarrier reference
- · SECAM demodulation
 - limiter-amplifier
 - quadrature-demodulator with a single external reference tuned circuit
 - alternate line blanking, H and V blanking
 - de-emphasis

- Gain controlled chrominance amplifier
- ACC demodulation controlled by system scanning
- Internal colour-difference signal output filters to remove the residual subcarrier

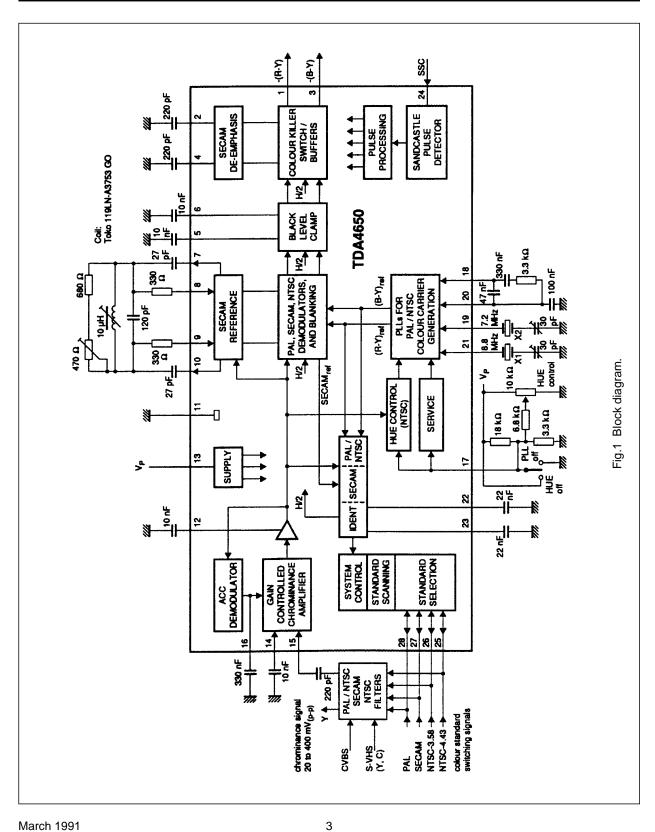
GENERAL DESCRIPTION

The TDA4650 is a monolitic integrated multistandard colour decoder for PAL, SECAM and NTSC (3.58 and 4.43 MHz) with negative colour difference output signals. The colour-difference output signals are fed to the TDA4660/TDA4661, Switched capacitor delay line.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _p	supply voltage range (pin 13)		10.8	12.0	13.2	V
I _p	supply current (pin 13)		_	60	_	mA
V _{i(p-p)}	chrominance input voltage (pin 15) (peak-to-peak value)		20	100	400	mV
V _{o(p-p)}	colour-difference output voltage (pin 1) (peak-to-peak value)	PAL/NTSC	0.42	0.525	0.66	V
	colour-difference output voltage (pin 3) (peak-to-peak value)	PAL/NTSC	0.53	0.665	0.84	V
	colour-difference output voltage (pin 1) (peak-to-peak value)	SECAM	0.83	1.05	1.32	V
	colour-difference output voltage (pin 3) (peak-to-peak value)	SECAM	1.06	1.33	1.67	V

ORDERING INFORMATION


EXTENDED	PACKAGE					
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE		
TDA4650	28	DIL	plastic	SOT117 ⁽¹⁾		
TDA4650WP	28	PLCC	plastic	SOT261 ⁽²⁾		

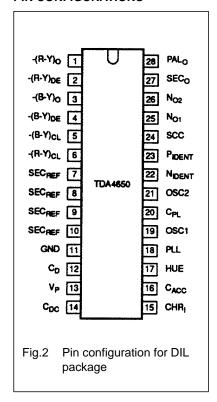
Note

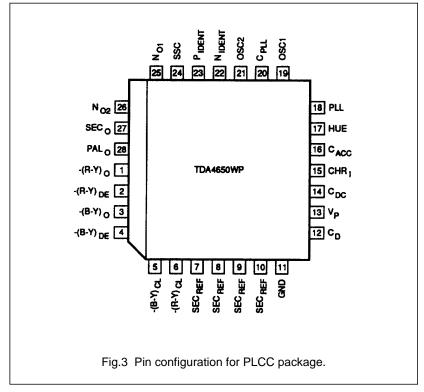
1. SOT117-1; 1996 November 28.

2. SOT261-2; 1996 November 28.

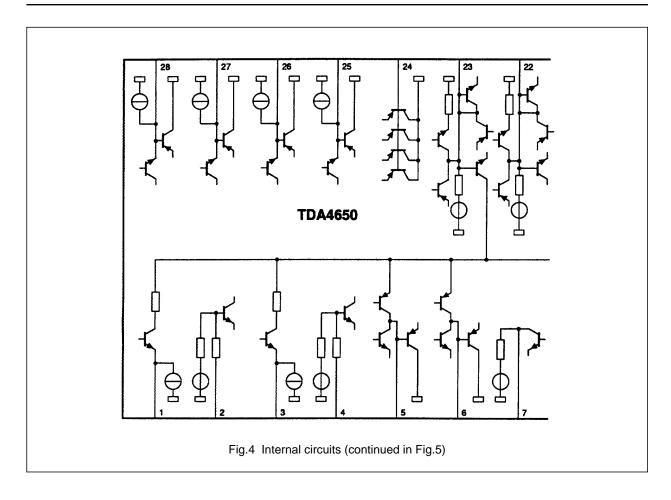
TDA4650

March 1991


TDA4650

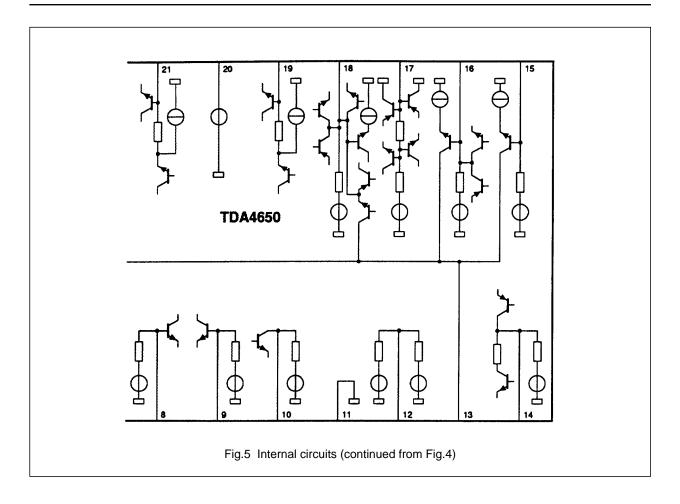

PINNING

SYMBOL	PIN	DESCRIPTION
-(R-Y) ₀	1	–(R-Y) output
-(R-Y) _{DE}	2	(R-Y) de-emphasis
–(B-Y) _o	3	–(B-Y) output
-(B-Y) _{DE}	4	(B-Y) de-emphasis
-(B-Y) _{CL}	5	(B-Y) clamping
-(R-Y) _{CL}	6	(R-Y) clamping
SEC _{REF}	7	SECAM reference tuned circuit
SEC _{REF}	8	SECAM reference tuned circuit
SEC _{REF}	9	SECAM reference tuned circuit
SEC _{REF}	10	SECAM reference tuned circuit
GND	11	ground
C _D	12	DC for demodulators
V_P	13	supply voltage
C _{DC}	14	DC feedback


SYMBOL	PIN	DESCRIPTION
CHR _I	15	chrominance input
C _{ACC}	16	automatic colour control
HUE	17	hue control
PLL	18	PLL time constant
OSC1	19	input for 7.15 MHz oscillator
C _{PLL}	20	PLL DC reference
OSC2	21	input for 8.86 MHz oscillator
N _{IDENT}	22	NTSC identification
P _{IDENT}	23	PAL/SECAM identification
SSC	24	super sandcastle pulse input
N _{O1}	25	NTSC (4.43 MHz) identification
N _{O2}	26	NTSC (3.58 MHz) identification
SECo	27	SECAM identification
PALo	28	PAL identification

PIN CONFIGURATIONS

TDA4650



LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _P	supply voltage (pin 13) –	13.2	V	
VI	voltage range at pins 1, 3, 17 and 24 to 28	0	V_P	V
Io	output current (pins 1 and 3)	_	-5	mA
I _{i/o}	input/output current (pins 25 to 28)	_	-5	μΑ
T _{stg}	storage temperature range	-25	+ 150	°C
T _{amb}	operating ambient temperature range	0	+ 70	°C
R _{th j-a}	from junction to ambient in free air:			
	SOT117	_	37	K/W
	SOT261	_	70	K/W
P _{tot}	total power dissipation (SOT117)	_	1.4	W
	total power dissipation (SOT261)	_	1.1	W

TDA4650

TDA4650

CHARACTERISTICS

All voltages are measured to GND (pin 11); $V_P = 12$ V; chrominance input signal $V_{15(p-p)} = 100$ mV (with 75 % colour bar signal); 4 μ s burst-blanking pulse and vertical blanking superimposed on super sandcastle pulse; $T_{amb} = 25$ °C; measured in test circuit of Fig.1; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage range		10.8	12.0	13.2	V
I _P	supply current		50	60	80	mA
Chrominan	ce part			•	•	•
V _{i(p-p)}	input signal (pin 15) (peak-to-peak value)		20	100	400	mV
R _i	input resistance (pin 15)		7	10	13	kΩ
C _i	input capacitance (pin 15)		_	4	5	pF
Demodulate	or part (PAL/NTSC)				·	
V _{1(p-p)}	colour difference –(R–Y) output signal (peak-to-peak value)	at nominal phase of hue control	0.42	0.525	0.66	V
V _{3(p-p)}	colour difference –(B–Y) output signal (peak-to-peak value)	at nominal phase of hue control	0.53	0.665	0.84	V
V ₁ /V ₃	ratio of colour difference signals (R-Y)/(B-Y) for NTSC	at nominal phase of hue control	0.75	0.79	0.83	
V ₁ /V ₁	ratio of PAL/NTSC signals (R–Y) _{PAL} /(R–Y) _{NTSC}	at nominal phase of hue control	_	_	1	dB
m	signal linearity	$V_{1(p-p)} = 0.8 \text{ V} - (R-Y)$	0.8	_	_	
		$V_{3(p-p)} = 1.0 \text{ V} - (B-Y)$	0.8	_	_	
V _{1,3}	DC output level	proportional to V _P	6.3	6.8	7.3	V
	H/2 ripple at CD outputs	without colour bars	_	_	10	mV
V _{1,3(p-p)}	residual carrier at CD outputs (peak-to-peak value)	4.43 MHz	_	_	10	mV
		8.87 MHz	_	_	30	mV
Z _{1,3}	output impedance		_	_	200	Ω
Demodulate	or part (SECAM); note 1					
V _{1(p-p)}	colour difference –(R–Y) output signal (peak-to-peak value)	every second line blanked	0.83	1.05	1.32	V
V _{3(p-p)}	colour difference –(B–Y) output signal (peak-to-peak value)	every second line blanked	1.06	1.33	1.67	V
V _{1,3}	DC output level	proportional to V _P	6.3	6.8	7.3	V
	H/2 ripple at CD outputs	without colour bars every second line blanked	_	-	10	mV
V _{1,3(p-p)}	residual carrier at CD outputs	4.43 MHz	_	_	30	mV
	(peak-to-peak value)	8.87 MHz	_	_	30	mV

Philips Semiconductors Preliminary specification

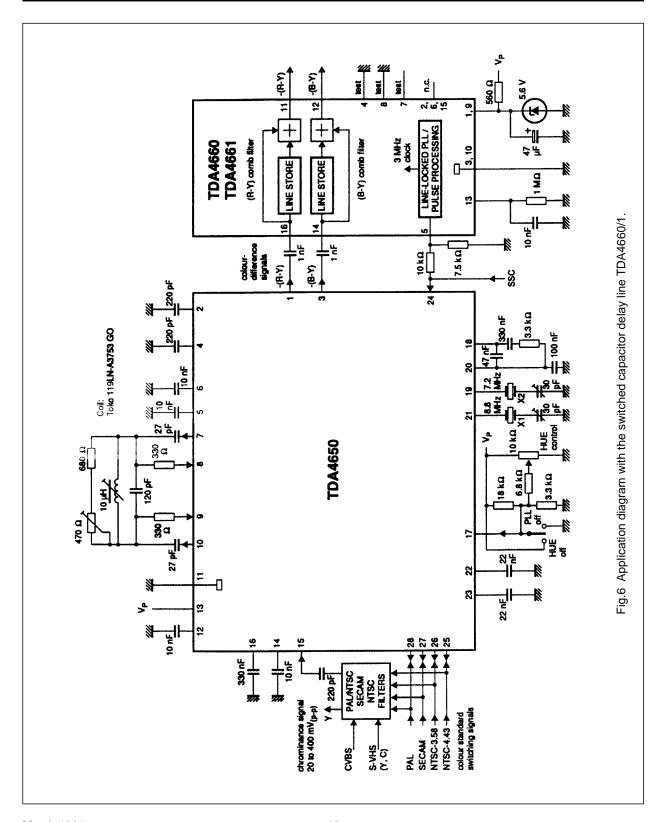
Multistandard colour decoder, with negative colour difference output signals

TDA4650

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Demodulate	or part (SECAM) (continued); note	1		•	-	•
$\Delta V_{1,3}/\Delta V_{P}$	shift of blanking levels relative to		_	_	3	mV/V
$\Delta V_1/\Delta T$	demodulated fo levels		_	0.16	_	mV/K
$\Delta V_3/\Delta T$	1		-	-0.25	_	mV/K
Hue contro	l part					
ф	phase shift of reference carrier relative to phase at V ₁₇ = 3 V	V ₁₇ = 2 V	-30	-40	-	deg
	phase shift of reference carrier	V ₁₇ = 3 V	_	0	± 5	deg
	phase shift of reference carrier relative to phase at V ₁₇ = 3 V	V ₁₇ = 4 V	30	40	-	deg
V ₁₇	internal bias voltage		_	3	_	V
	switching voltage for oscillator adjustment	burst OFF; colour ON	0	_	0.5	V
	switching voltage for forced colour ON	burst ON; colour ON	5.5	_	V _P	V
R ₁₇	input resistance		3.8	5.0	6.2	kΩ
Reference	oscillator (PLL); note 2					
R _{19,21}	input resistance		_	350	_	Ω
C _{19,21}	input resistance		_	_	10	pF
f _c	catching range	at 4.43 MHz	± 400	_	_	Hz
		at 3.57 MHz	± 330	_	_	Hz
at pin 28 f at pin 27 f at pin 26 f	ltages for chrominance filters and c	rystals:				
V _{28 to 25}	switching voltages	control voltage OFF state	_	0.05	0.5	V
20 10 20	3 4 3	control voltage ON state; during scanning	2.35	2.45	2.55	V
		control voltage ON state; internal forced	5.6	5.8	6.0	V
		control voltage ON state; external forced	9.0	-	V _P	V
I _{28 to 25}	output currents		_	_	-3	mA
t_d	delay time for system hold		2	_	3	cycles
	delay time for colour ON		2	_	3	cycles
	delay time for colour OFF		0	_	1	cycles
ts	scanning time for each standard	note 3	_	4	_	cycles

Philips Semiconductors Preliminary specification

Multistandard colour decoder, with negative colour difference output signals

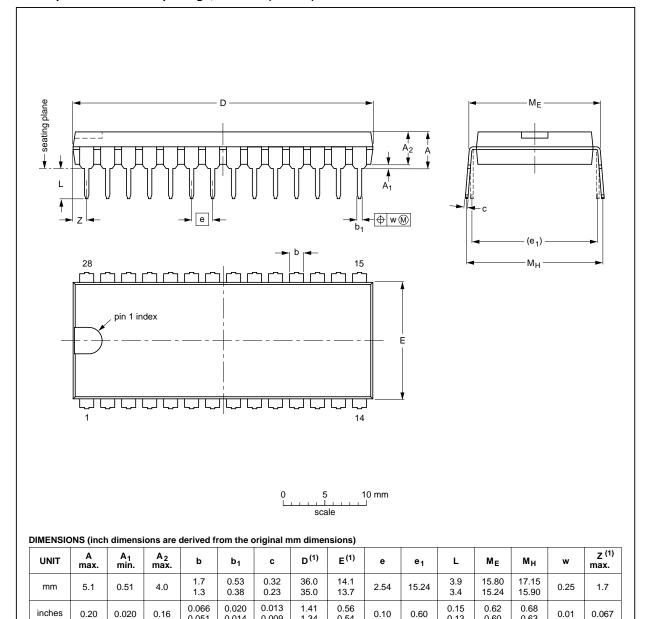

TDA4650

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Super sand	castle pulse detector (note 4)		'	-	•	•
V ₂₄	input voltage pulse levels to	pulse ON	1.3	1.6	1.9	V
	separate V and H blanking pulses	pulse OFF	1.1	1.4	1.7	V
	voltage pulse amplitude		2.0	2.5	3.0	V
	input voltage pulse levels to separate H blanking pulse	pulse ON	3.3	3.6	3.9	V
		pulse OFF	3.1	3.4	3.7	V
	voltage pulse amplitude		4.1	4.5	4.9	V
	input voltage pulse levels to	pulse ON	6.2	6.6	7.0	V
	separate burst gating pulse	pulse OFF	6.0	6.4	6.8	V
	voltage pulse amplitude		7.7	_	V _P	V
	input voltage	during line scan	_	_	1.0	V
l ₂₄	input current	during line scan	_	_	-100	μΑ

Notes to the characteristics

- 1. For the SECAM standard, amplitude and H/2 ripple content of the CD signals (R-Y) and (B-Y) depend on the characteristics of the external tuned circuit at pins 7 to 10. The resonant frequency of the external tuned circuit must be adjusted such that the demodulated f_o voltage level is zero in the -(B-Y) output channel at pin 3. Now it is possible to adjust the quality of the external circuit such that the demodulated f_o voltage level is zero in the -(R-Y) output channel at pin 1. If necessary, the f_o voltage level in the -(B-Y) output channel must be readjusted to zero by the coil of the tuned circuit.
 - The external capacitors at the pins 2 and 4 (220 pF each) are matched to the internal resistances of the de-emphasis network such that every alternate scanned line is blanked.
- The f_o frequencies of the 8.8 MHz crystal at pin 21, and the 7.2 MHz crystal at pin 19, can be adjusted when the voltage at pin 17 is less than 0.5 V (burst OFF), thus providing double subcarrier frequencies of the chrominance signal.
- 3. The inquiry sequence for the standard is: PAL SECAM NTSC (3.58 MHz) NTSC (4.43 MHz). PAL has priority with respect to SECAM, etc.
- 4. The super sandcastle pulse is compared with three internal threshold levels which are proportional to V_P.

TDA4650


TDA4650

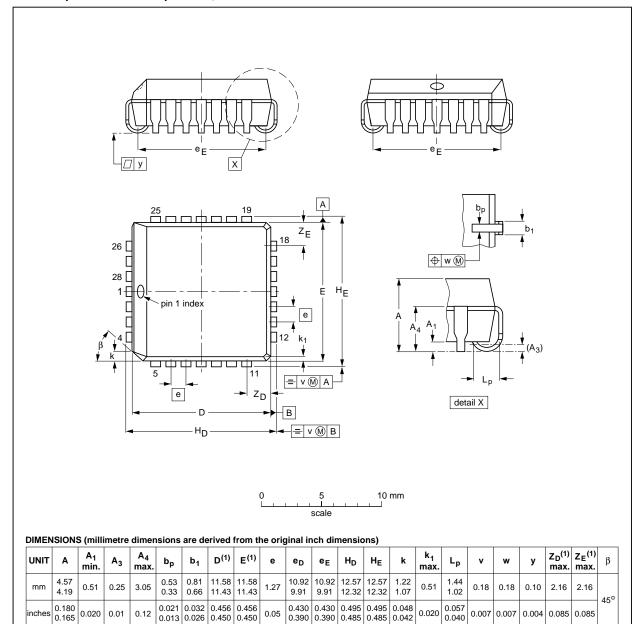
Preliminary specification

PACKAGE OUTLINES

DIP28: plastic dual in-line package; 28 leads (600 mil)

SOT117-1

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT117-1	051G05	MO-015AH			92-11-17 95-01-14	

TDA4650

PLCC28: plastic leaded chip carrier; 28 leads

SOT261-2

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT261-2					92-11-17 95-02-25

Philips Semiconductors Preliminary specification

Multistandard colour decoder, with negative colour difference output signals

TDA4650

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{\text{stg max}}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or				

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.