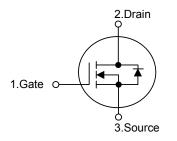


3N60

Power MOSFET

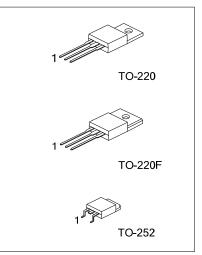
3 Amps, 600/650 Volts N-CHANNEL POWER MOSFET


DESCRIPTION

The UTC **3N60** is a high voltage and high current power MOSFET, designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)}$ = 3.6 Ω @V_{GS} = 10 V
- * Ultra low gate charge (typical 10 nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 5.5 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION

Ordering Number		Paakaga	Pin Assignment			Deaking	
Normal	Lead Free Plating Package		1	2	3	Packing	
3N60-x-TA3-T	3N60L-x-TA3-T	TO-220	G	D	S	Tube	
3N60-x-TF3-T	3N60L-x-TF3-T	TO-220F	G	D	S	Tube	
3N60-x-TN3-T	3N60L-x-TN3-T	TO-252	G	D	S	Tape Reel	
3N60-x-TN3-T	3N60L-x-TN3-T	TO-252	G	D	S	Tube	

3N60L-x-TA3-T (1)Packing Type (2)Package Type (3)Drain-Source Voltage (4)Lead Plating	(1) R: Tape Reel, T: Tube (2) TA3: TO-220, TF3: TO-22F, TN3: TO-252 (3) A: 600V, B: 650V (4) L: Lead Free Plating, Blank: Pb/Sn
---	--

*Pb-free plating product number: 3N60L

PARAME	TER	SYMBOL	RATINGS	UNIT
Drain Source Voltage	3N60-A	V	600	V
Drain-Source Voltage	3N60-B	V _{DSS} –	650	V
Gate-Source Voltage		V _{GSS}	±30	V
Avalanche Current (Note 1)		I _{AR}	3.0	А
Continuous Drain Current		Ι _D	3.0	А
Pulsed Drain Current (Note 1)		I _{DM}	12	А
Avalanche Energy	Single Pulsed (Note 2)	E _{AS}	200	mJ
	Repetitive (Note 1)	E _{AR}	7.5	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5	V/ns
	TO-220		75	
Power Dissipation	TO-220F	PD	34	W
	TO-252		50	
Junction Temperature		TJ	+150	°C
Operating Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
	TO-220	θ _{JA}	62.5	
Junction-to-Ambient	TO-220F		62.5	°C/W
	TO-252		110	
Junction-to-Case	TO-220		1.67	
	TO-220F	θ_{JC}	3.68	°C/W
	TO-252		2.5	

■ ELECTRICAL CHARACTERISTICS (T_c =25°C, unless otherwise specified)

					1	1	η η
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	3N60-A	BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	600			V
	3N60-B			650			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V			10	μA
Gate-Source Leakage Current	Forward	I _{GSS}	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
	Reverse		V_{GS} = -30 V, V_{DS} = 0 V			-100	nA
Breakdown Voltage Temperature		$\triangle BV_{DSS} / \triangle T_J$	I_D = 250 µA, Referenced to 25°C		0.6		V/℃
Coefficient					0.0		VIC
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} = 10 V, I _D = 1.5A		2.8	3.6	Ω
DYNAMIC CHARACTERISTICS							
Input Capacitance		CISS			350	450	рF
Output Capacitance		Coss	V _{DS} = 25 V, V _{GS} = 0 V, f = 1MHz		50	65	рF
Reverse Transfer Capacitance		C _{RSS}			5.5	7.5	pF

3N60

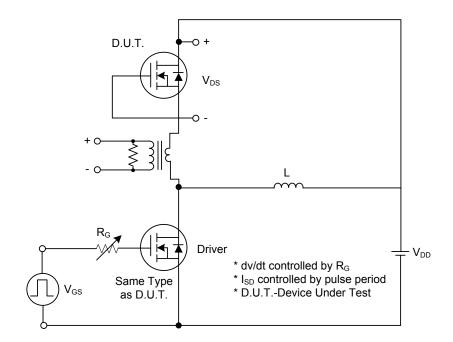
■ ELECTRICAL CHARACTERISTICS(Cont.)

SWITCHING	CHARACTERISTICS
SWITCHING	CHARACTERISTICS

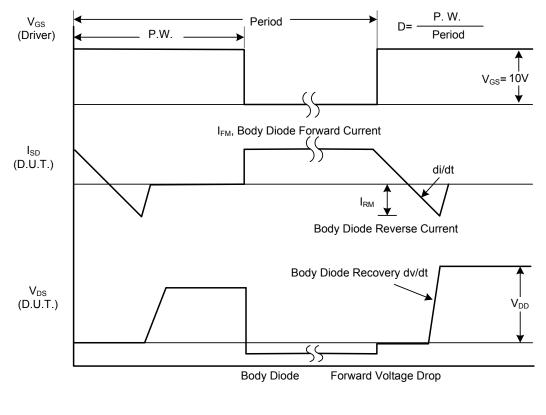
SWITCHING CHARACTERISTICS								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Turn-On Delay Time	t _{D(ON)}			10	30	ns		
Turn-On Rise Time	t _R	V_{DD} = 300V, I_D = 3.0 A, R_G = 25 Ω		30	70	ns		
Turn-Off Delay Time	t _{D(OFF)}	(Note 4, 5)		20	50	ns		
Turn-Off Fall Time	t⊧			30	70	ns		
Total Gate Charge	Q_{G}	V _{DS} = 480V,I _D = 3.0A, V _{GS} = 10 V (Note 4, 5)		10	13	nC		
Gate-Source Charge	Q_{GS}			2.7		nC		
Gate-Drain Charge	Q_{DD}			4.9		nC		
SOURCE- DRAIN DIODE RATINGS AND C	HARACTER	ISTICS						
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} = 0 V, I _S = 3.0 A			1.4	V		
Maximum Continuous Drain-Source Diode Forward Current	I _S				3.0	А		
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				12	А		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, I _S = 3.0 A,		210		ns		
Reverse Recovery Charge	Q_{RR}	dl _F /dt = 100 A/µs (Note 4)		1.2		μC		

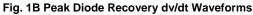
Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

2. L = 64mH, I_{AS} = 2.4A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C


3. I_{SD} ≤ 3.0A, di/dt ≤200A/µs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C

4. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%


5. Essentially independent of operating temperature



TEST CIRCUITS AND WAVEFORMS

UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

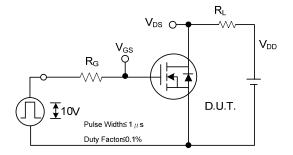


Fig. 2A Switching Test Circuit

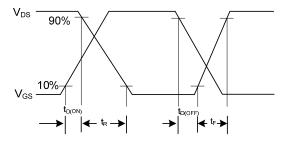


Fig. 2B Switching Waveforms

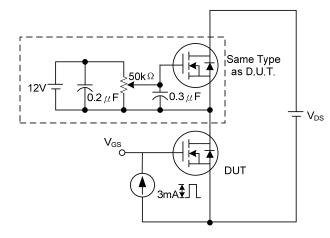
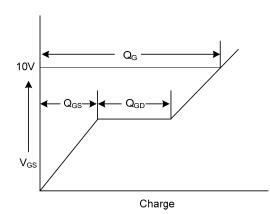
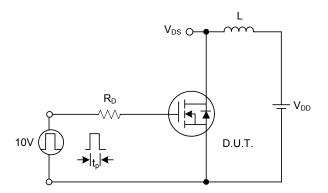
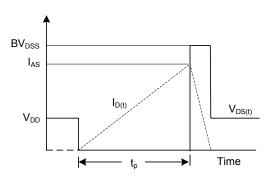
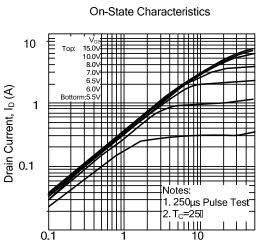
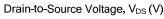




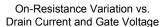
Fig. 3A Gate Charge Test Circuit

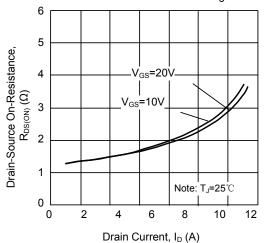


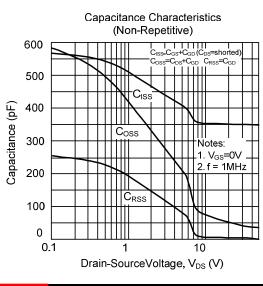
UNISONIC TECHNOLOGIES CO., LTD

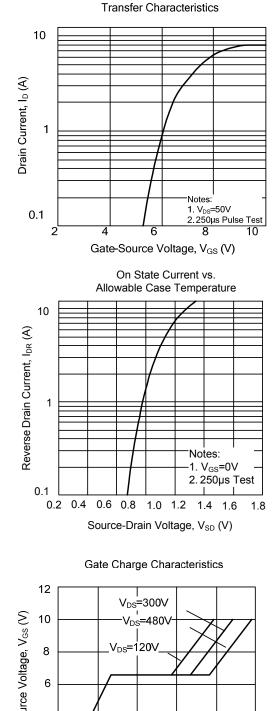


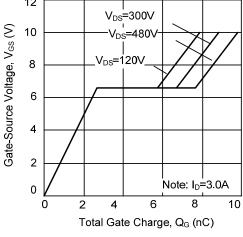

Fig. 4B Unclamped Inductive Switching Waveforms

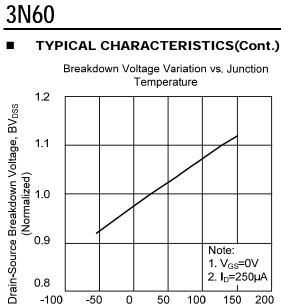

5 of 8 QW-R502-110,D


3N60

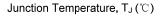


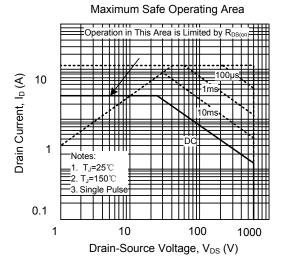


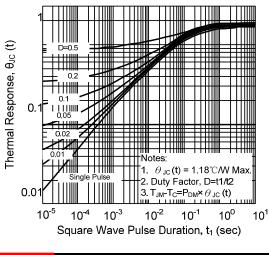


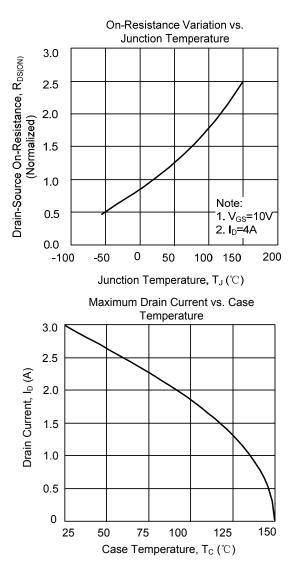











200

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw